Abstract

BackgroundNonfusion fixation is an effective way to treat lumbar degeneration. In the present study, we analyzed the clinical effects and radiographic outcomes of the Isobar TTL system used to treat two-segment lumbar degenerative disease.MethodForty-one patients diagnosed with two-segment lumbar degenerative disease underwent surgical implantation of the Isobar TTL dynamic stabilization system (n = 20) or a rigid system (n = 21) from January 2013 to June 2017. The mean follow-up time was 23.6 (range 15–37) months. Clinical results were evaluated with the Oswestry Disability Index (ODI), modified Macnab criteria, and the visual analog score (VAS). Radiographic evaluations included the height of the intervertebral space and the range of motion (ROM) of the treated and adjacent segments. The intervertebral disc signal was classified using the modified Pfirrmann grading system and the University of California at Los Angeles (UCLA) system.ResultsThe clinical results, including the ODI and VAS, showed that there was significant improvement in the two groups after implantation and that the difference between the two groups was not significant. In addition, the clinical efficacy indicated by the modified Macnab criteria for the two groups was similar. Radiological outcomes included the height of the intervertebral space, lumbar mobility, and intervertebral disc signal. The height of the intervertebral space of the upper adjacent segment L2/3 in the rigid group was significantly lower than that in the Isobar TTL group at the last follow-up. Furthermore, the number of ROMs of the fixed-segment L3/4 in the Isobar TTL group was significantly less than that before implantation, suggesting that the fixed-segment ROMs in the Isobar TTL group were limited. In addition, the ROM of the upper adjacent segment L2/3 in the last follow-up of the rigid group increased significantly, while that of the Isobar TTL group did not change after implantation. Finally, the incidence of adjacent-segment degeneration (ASD) was significantly greater in the rigid group than in the Isobar TTL group according to the UCLA system.ConclusionThe Isobar TTL system can be clinically effective for treating two-segment lumbar degenerative disease. Compared with rigid fixation, the Isobar TTL system yielded better radiographic outcomes and maintained the mobility of the treated segments with less impact on the proximal adjacent segment.

Highlights

  • Nonfusion fixation is an effective way to treat lumbar degeneration

  • The height of the intervertebral space of the upper adjacent segment L2/3 in the rigid group was significantly lower than that in the Isobar TTL group at the last follow-up

  • The range of motion (ROM) of the upper adjacent segment L2/3 in the last follow-up of the rigid group increased significantly, while that of the Isobar TTL group did not change after implantation

Read more

Summary

Introduction

We analyzed the clinical effects and radiographic outcomes of the Isobar TTL system used to treat two-segment lumbar degenerative disease. A common degenerative disease of the spine, may lead to LBP and radicular leg pain [2]. The elderly may experience degeneration of intervertebral discs, which is often multisegmental and sometimes requires surgical treatment [3]. Interbody fusion is recognized as the “gold standard” treatment for lumbar degenerative diseases, but spinal fusion surgery often incurs many complications, including donor area complications, morbidity, and adjacent-segment disease [4]. A series of studies has shown that fusion surgery accelerates intervertebral disc degeneration near the area of the spinal cord fusion [5,6,7]. Recent data have shown this phenomenon and provided information on its occurrence, but there is a significant difference in morbidity (5–70%) [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call