Abstract

This paper aimed to investigate the influence of climatic and topographic factors on the distribution of vegetation in the Virunga Volcanoes Massif using GIS and remote sensing techniques. The climatic variables considered were precipitation, Land Surface Temperature (LST), and evapotranspiration (ET), whereas the topographic factors considered were elevation and aspect. The dataset consisted of MODIS NDVI data, satellite-delivered precipitation, ET, and the LST. A 2014 Landsat 8 OLI image was used to produce a vegetation map of the study area, while DEM was used to derive the elevation attributes and to calculate the aspect angles. Moran’s I and Geographically Weighted Regression (GWR) Model was used to analyze the relationships between the climatic factors and NDVI changes over elevation and aspect. The results indicated that among the nine vegetation types inventoried in the area, the Mean NDVI varied from 0.33 to 0.59 and the optimal vegetation growth was found at an elevation between 2000 and 3900 m, with mean NDVI values larger than 0.50. The peak mean NDVI value of 0.59 was found at the elevation from 2100 to 2800 m. Vegetation growth was found to be more sensitive to elevation, as NDVI values were more varied at a lower elevation (<4000 m) than at a higher elevation (>4000 m). Considering the aspect, the greater vegetation growth was found in SE (132°, 148°), SW (182°, 186°), and NW (309.5°–337.5°), with mean NDVI values larger than 0.56. This indicated that vegetation was susceptible to better growth conditions in the lower elevation ranges and in shady areas. The vegetation NDVI in this study area was mostly uncorrelated with precipitation (R2 = 0.34), but was strongly correlated with LST (R2 = 0.99) and ET (R2 = 98). LST (≥18 °C) and ET (1286 mm/year−1) were found to provide optimal conditions for vegetation growth in the Virunga Volcanoes Massif. Empirically, the results concluded that elevation, aspect, LST, and ET are the main factors controlling the spatial distribution and vegetation growth in this area. This information is significantly helpful for biodiversity conservation and constitutes a valuable input to environmental and ecological research.

Highlights

  • The importance of vegetation cover in ecological processes, especially in forests located in mountainous areas, cannot be overstated [1]

  • This study evaluated the vegetation growth patterns and the spatial distribution in the Virunga

  • Basing on the results obtained from the analysis of normalized difference vegetation index (NDVI) variability per vegetation type vegetation in this area

Read more

Summary

Introduction

The importance of vegetation cover in ecological processes, especially in forests located in mountainous areas, cannot be overstated [1]. Vegetation plays an invaluable role in protecting. The dependencies on vegetation cover are always expanding from local to global, where millions of people and animal species depend on forest and plants [3], in mountain areas. Vegetation cover protects people and animals against natural hazards such as rockfall events, landslides, and debris flows, while considering its particular role in carbon dioxide (CO2 ) sequestration [3,4]. Settlements and infrastructure developments located at the foot of mountains mainly depend on the protective effects of vegetation cover [5]. Understanding the growth and spatial patterns of vegetation in high topographic areas has been suggested by many researchers [6,7,8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call