Abstract

BackgroundAngiopoietin-like protein 3 (ANGPTL3), a liver-derived protein, plays an important role in the lipid and lipoprotein metabolism. Using data available from the DiOGenes study, we assessed the link with clinical improvements (weight, plasma lipid, and insulin levels) and changes in liver markers, alanine aminotransferase, aspartate aminotransferase (AST), adiponectin, fetuin A and B, and cytokeratin 18 (CK-18), upon low-calorie diet (LCD) intervention. We also examined the role of genetic variation in determining the level of circulating ANGPTL3 and the relation between the identified genetic markers and markers of hepatic steatosis.MethodsDiOGenes is a multicenter, controlled dietary intervention where obese participants followed an 8-week LCD (800 kcal/day, using a meal replacement product). Plasma ANGPTL3 and liver markers were measured using the SomaLogic (Boulder, CO) platform. Protein quantitative trait locus (pQTL) analyses assessed the link between more than four million common variants and the level of circulating ANGPTL3 at baseline and changes in levels during the LCD intervention.ResultsChanges in ANGPTL3 during weight loss showed only marginal association with changes in triglycerides (nominal p = 0.02) and insulin (p = 0.04); these results did not remain significant after correcting for multiple testing. However, significant association (after multiple-testing correction) were observed between changes in ANGPTL3 and AST during weight loss (p = 0.004) and between ANGPTL3 and CK-18 (baseline p = 1.03 × 10−7, during weight loss p = 1.47 × 10−13). Our pQTL study identified two loci significantly associated with changes in ANGPTL3. One of these loci (the APOA4-APOA5-ZNF259-BUD13 gene cluster) also displayed significant association with changes in CK-18 levels during weight loss (p = 0.007).ConclusionWe clarify the link between circulating levels of ANGPTL3 and specific markers of liver function. We demonstrate that changes in ANGPLT3 and CK-18 during LCD are under genetic control from trans-acting variants. Our results suggest an extended function of ANGPTL3 in the inflammatory state of liver steatosis and toward liver metabolic processes.

Highlights

  • Angiopoietin-like protein 3 (ANGPTL3), a liver-derived protein, plays an important role in the lipid and lipoprotein metabolism

  • After the weight loss period, the average body mass index (BMI) was decreased to 30.7 ± 4. 5 kg/m2, and glycemic profiles improved to 4.82 ± 0. 54 mmol/l for fasting glucose and 8.15 ± 6.12 μIU/ml for insulin

  • For other variables, there were no significant associations between ANGPTL3 and their concentration at baseline or changes during the weight loss period (Table 2)

Read more

Summary

Introduction

Angiopoietin-like protein 3 (ANGPTL3), a liver-derived protein, plays an important role in the lipid and lipoprotein metabolism. The prevalence of the metabolic syndrome increases due to a parallel rise in the occurrence of obesity and insulin resistance [1]. This highlights the need for a more detailed understanding of the underlying molecular mechanisms. Angiopoietin-like proteins (ANGPTLs) have been reported to be involved in the regulation of lipid metabolism [2]. The human gene of angiopoietin-like protein 3 (ANGPTL3) is located on chromosome 1 and encodes one of several structurally similar secreted glycoproteins in the ANGPTL family. ANGPTL3 deficiency results in a dramatic reduction of the plasma concentration of TG and cholesterol [5, 7], and loss of function mutations in ANGPTL3 are the cause of a recessive form of familial combined hyperlipidemia [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call