Abstract

The present study aimed to identify key circRNAs and pathways associated with heat stress in blood samples of Holstein cows, which will provide new insights into the molecular mechanisms driving heat stress in cows. Hence, we evaluated changes in milk yield, rectal temperature, and respiratory rate of experimental cows between heat stress (summer) and non-heat stress (spring) conditions with two comparisons, including Sum1 vs. Spr1 (same lactation stage, different individuals, 15 cows per group) and Sum1 vs. Spr2 (same individual, different lactation stages, 15 cows per group). Compared to both Spr1 and Spr2, cows in the Sum1 group had a significantly lower milk yield, while rectal temperature and respiratory rate were significantly higher (p < 0.05), indicating that cows in the Sum1 group were experiencing heat stress. In each group, five animals were chosen randomly to undergo RNA-seq. The results reveal that 140 and 205 differentially expressed (DE) circRNAs were screened in the first and second comparisons, respectively. According to the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these DE circRNAs were mainly enriched in five signaling pathways, including choline metabolism, the PI3K/AKT signaling pathway, the HIF-1 signaling pathway, the longevity-regulating pathway, and autophagy. Then, we obtained the top 10 hub source genes of circRNAs according to the protein-protein interaction networks. Among them, ciRNA1282 (HIF1A), circRNA4205 (NR3C1), and circRNA12923 (ROCK1) were enriched in multiple pathways and identified as binding multiple miRNAs. These key circRNAs may play an important role in the heat stress responses of dairy cows. These results provide valuable information on the involvement of key circRNAs and their expression pattern in the heat stress response of cows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call