Abstract

BackgroundCongenital heart defects (CHD) represent one of the most common birth defects. This study aimed to evaluate the value of multiplex ligation-dependent probe amplification (MLPA) as a tool to detect the copy number variations (CNVs) of 22q11 in fetuses with CHD.ResultsA large cohort of 225 fetuses with CHD was screened by fetal echocardiography. Once common chromosome abnormalities in 30 fetuses were screened out by conventional G-banding analysis, the CNVs of chromosome 22q11 in the remaining 195 fetuses were determined by MLPA for prenatal genetic counseling. In 195 CHD fetuses with normal karyotype, 11 cases had pathological CNVs, including 22q11.2 deletion (seven cases), the deletion of 22q11 cat eye syndrome (CES) region (one case), 22q11.2 duplication (one case), 22q13.3 deletion (one case) and 17p13.3 deletion (one case). In total, our findings from MLPA screening represented 4.9 % in our cohort. Among these, three cases were inherited CNVs, and eight cases were de novo. These CNVs were further verified by single nucleotide polymorphism (SNP)-array analysis, and their chromosomal location was refined.ConclusionThis study indicated that MLPA could serve as an effective test for routine prenatal diagnosis of 22q11 in fetuses with CHD.

Highlights

  • Congenital heart defects (CHD) represent one of the most common birth defects

  • The results showed that the use of multiplex ligation-dependent probe amplification (MLPA) had not increased the number of diagnosis of 22q11 deletion, and the author suggested that MLPA should not replace fluorescence in situ hybridization (FISH) as a conventional technology for prenatal diagnosis of 22q11 chromosome deletion

  • For remaining 195 CHD fetuses with normal karyotype, MLPA analysis revealed that 11 cases had copy number variation (CNV) (Table 1)

Read more

Summary

Introduction

Congenital heart defects (CHD) represent one of the most common birth defects. Congenital heart defects (CHD) usually refer to the abnormalities in the heart’s structure or function that arise before birth [1]. It represents the most frequent birth defects and the leading cause of death from a congenital structural abnormality worldwide, causing more than 220,000 deaths globally every year [2]. Copy number variants (CNVs) have been identified as a significant factor in CHD development and the most common example is the 22q11 deletion syndrome, which is estimated to affect approximately 1/4000 to 1/6000 in live births [5, 6].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.