Abstract
Parallel computing systems provide hardware redundancy that helps to achieve low cost fault-tolerance, by duplicating the task into more than a single processor, and comparing the states of the processors at checkpoints. This paper suggests a novel technique, based on a Markov reward model (MRM), for analyzing the performance of checkpointing schemes with task duplication. We show how this technique can be used to derive the average execution time of a task and other important parameters related to the performance of checkpointing schemes. Our analytical results match well the values we obtained using a simulation program. We compare the average task execution time and total work of four checkpointing schemes, and show that generally increasing the number of processors reduces the average execution time, but increases the total work done by the processors. However, in cases where there is a big difference between the time it takes to perform different operations, those results can change. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.