Abstract

Small heat shock proteins (sHSPs) are the most abundant stress proteins in plants. Usually not expressed under permissive conditions, they can accumulate to more than 2% of the total cellular protein content during heat stress. At present several points of evidence indicate that these proteins act as molecular chaperones by keeping partially denatured proteins in a folding-competent state. In plants sHSPs are encoded by a multigene family, which can be segregated into several classes according to their subcellular position and/or sequence homology. Curiously, two different classes appear in the cytoplasm. Their specific role during heat shock remains elusive. Here we present some evidence that both classes of sHSPs enhance recovery of reporter protein activity in the presence of HSP70. Applying peptide arrays prepared by SPOT synthesis and in situ analysis by confocal laser scanning microscopy, we could further show that the two classes of sHSP are attached to each other and are able to interact with non-native proteins both in vivo and in vitro. Although both of the sHSPs act similarly as molecular chaperones, immunohistochemistry experiments support the hypothesis that the two have different cellular functions in the development of heat-induced cytoplasmic heat shock granules under elevated temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call