Abstract

We investigate centrality and root-inference properties in a class of growing random graphs known as sublinear preferential attachment trees. We show that a continuous time branching processes called the Crump-Mode-Jagers (CMJ) branching process is well-suited to analyze such random trees, and prove that almost surely, a unique terminal tree centroid emerges, having the property that it becomes more central than any other fixed vertex in the limit of the random growth process. Our result generalizes and extends previous work establishing persistent centrality in uniform and linear preferential attachment trees. We also show that centrality may be utilized to generate a finite-sized $1-\epsilon$ confidence set for the root node, for any $\epsilon > 0$ , in a certain subclass of sublinear preferential attachment trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.