Abstract

A multitude of genetic programs is activated during embryonic development that orchestrates cell differentiation to generate an astounding diversity of somatic cells, tissues, and organs. The precise activation of these genetic programs is regulated by morphogens, diffusible molecules that direct cell fate at different thresholds. Understanding how genetic activation coordinates morphogenesis requires the study of local interactions triggered by morphogens during development. The use of beads soaked in proteins or drugs implanted into distinct regions of the embryo enables studying the role of specific molecules in the establishment of digits and other developmental processes. This experimental technique provides information on the control of cell induction, cell fate, and pattern formation. Thus, this soaked bead assay is an extremely powerful and valuable experimental tool applicable to other embryonic models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.