Abstract
AbstractDetailed optical lasing characteristics in liquid crystal (LC) microlasers consisting of multiple polymer cholesteric LC (PCLC) layers are presented as broadband resonators sandwiching a layer of thick gain media, dye‐containing nematic LC (NLC) or isotropic liquid, in between. Multiple lasing emission peaks due to Fabry‐Perot cavity modes are observed for both gain media, and their polarization characteristics investigated. To analyze lasing characteristics, specified eigen modes are defined, the polarization states of which are maintained before and after passing through the broadband resonator, and obtained for the present full system by using the Berreman 4 × 4 matrix method. Using these specified eigen modes, the optical density for each mode is calculated and compared with the experimental results, and shows good agreement. Finally, lasing characteristics between the resonators with NLC and isotropic gain media are compared, and the advantages of adopting dye‐doped NLC gain medium are shown for tunable red, green, blue lasing in a microlaser system with a broadband resonator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.