Abstract

Hydraulic vibrations in Francis turbines caused by cavitation profoundly impact the overall hydraulic performance and operational stability. Therefore, to investigate the influence of cavitation phenomena under high-load conditions, a three-dimensional unsteady numerical simulation is carried out for a Francis turbine with different head operating conditions, which is combined with the SST k-w turbulence model and two-phase flow cavitation model to capture the evolution of cavitation under high-load conditions. Additionally, utilizing entropy production theory, the hydraulic losses of the Francis turbine during cavitation development are assessed. Contrary to the pressure-drop method, the entropy production theory can quantitatively reflect the characteristics of the local hydraulic loss distribution, with a calculated error coefficient τ not exceeding 2%. The specific findings include: the primary sources of energy loss inside the turbine are the airfoil cavitation and cavitation vortex rope, constituting 26% and 71% of the total hydraulic losses, respectively. According to the comparison with model tests, the vapor volume fraction (VVF) inside the draft tube fluctuates periodically under high-load conditions, causing low-frequency pressure pulsation in the turbine’s power, flow rate, and other external characteristic parameters at 0.37 Hz, and the runner radial force fluctuates at a frequency of 1.85 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.