Abstract

BackgroundSomatic cell nuclear transfer in cats offers a useful tool for the generation of valuable research models. However, low birth rates after nuclear transfer hamper exploitation of the full potential of the technology. Poor embryo development after activation of the reconstructed oocytes seems to be responsible, at least in part, for the low efficiency. The objective of this study was to characterize the response of cat oocytes to various stimuli in order to fine-tune existing and possibly develop new activation methods for the generation of cat disease models by somatic cell nuclear transfer.MethodsFirst, changes in the intracellular free calcium concentration [Ca2+]i in the oocytes induced by a number of artificial stimuli were characterized. The stimuli included electroporation, ethanol, ionomycin, thimerosal, strontium-chloride and sodium (Na+)-free medium. The potential of the most promising treatments (with or without subsequent incubation in the presence of cycloheximide and cytochalasin B) to stimulate oocyte activation and support development of the resultant parthenogenetic embryos was then evaluated. Finally, the most effective methods were selected to activate oocytes reconstructed during nuclear transfer with fibroblasts from mucopolysaccharidosis I- and alpha-mannosidosis-affected cats.ResultsAll treatments were able to elicit a [Ca2+]i elevation in the ooplasm with various characteristics. Pronuclear formation and development up to the blastocyst stage was most efficiently triggered by electroporation (60.5 +/- 2.9 and 11.5 +/- 1.7%) and the combined thimerosal/DTT treatment (67.7 +/- 1.8 and 10.6 +/- 1.9%); incubation of the stimulated oocytes with cycloheximide and cytochalasin B had a positive effect on embryo development. When these two methods were used to activate oocytes reconstructed during nuclear transfer, up to 84.9% of the reconstructed oocytes cleaved. When the 2 to 4-cell embryos (a total of 220) were transferred into 19 recipient females, 4 animals became pregnant. All of the fetuses developed from oocytes activated by electroporation followed by cycloheximide and cytochalasin B incubation; no fetal development was detected as a result of thimerosal/DTT activation. Although heartbeats were detected in two of the cloned fetuses, no term development occurred.ConclusionElectroporation proved to be the most effective method for the activation of cat oocytes reconstructed by nuclear transfer. The combined thimerosal/DTT treatment followed by cycloheximide and cytochalasin B incubation triggered development effectively to the blastocyst stage; whether it is a viable option to stimulate term development of cloned cat embryos needs further investigations.

Highlights

  • Somatic cell nuclear transfer in cats offers a useful tool for the generation of valuable research models

  • The combined thimerosal/DTT treatment followed by cycloheximide and cytochalasin B incubation triggered development effectively to the blastocyst stage; whether it is a viable option to stimulate term development of cloned cat embryos needs further investigations

  • The aims of this study were to 1) characterize [Ca2+]i changes in cat oocytes induced by different stimuli; 2) develop new activation methods that could be applied after nuclear transfer to produce cleavage-stage embryos; and 3) assess the feasibility of nuclear transfer to produce cloned cats affected with the lysosomal storage diseases MPS or AMD

Read more

Summary

Introduction

Somatic cell nuclear transfer in cats offers a useful tool for the generation of valuable research models. The objective of this study was to characterize the response of cat oocytes to various stimuli in order to fine-tune existing and possibly develop new activation methods for the generation of cat disease models by somatic cell nuclear transfer. Ovulated mammalian oocytes are arrested at the metaphase stage of their second meiotic division [1] They resume meiosis and enter the first interphase at the time of fertilization when the fertilizing sperm activates the oocyte's developmental program by triggering changes in its intracellular free calcium concentration [Ca2+]i. In most cases a single [Ca2+]i rise is induced to stimulate development of the reconstructed oocyte [5] This was shown capable of triggering oocyte activation [6], the amplitude, frequency and duration of repetitive Ca2+ signals are believed to have profound effects on the immediate events of oocyte activation and on peri-implantation development [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call