Abstract

Case-control designs are widely used in rare disease studies. In a typical case-control study, data are collected from a sample of all available subjects who have experienced a disease (cases) and a sub-sample of subjects who have not experienced the disease (controls) in a study cohort. Cases are oversampled in case-control studies. Logistic regression is a common tool to estimate the relative risks of the disease with respect to a set of covariates. Very often in such a study, information of ages-at-onset of the disease for all cases and ages at survey of controls are known. Standard logistic regression analysis using age as a covariate is based on a dichotomous outcome and does not efficiently use such age-at-onset (time-to-event) information. We propose to analyze age-at-onset data using a modified case-cohort method by treating the control group as an approximation of a subcohort assuming rare events. We investigate the asymptotic bias of this approximation and show that the asymptotic bias of the proposed estimator is small when the disease rate is low. We evaluate the finite sample performance of the proposed method through a simulation study and illustrate the method using a breast cancer case-control data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.