Abstract

This paper studies effects of carrier heating on the amplified pico-second Gaussian pulse propagation in a quantum well semiconductor optical amplifier (QW-SOA) taking into account the holes’ non-parabolic density of states. In the analysis we have also considered the discontinuous distribution of energy band structure and the coupling between heavy hole, light hole and spin-orbit spilt-off bands. It has been found that at higher temperatures the wavelength at which the peak value of modal gain occurs decreases (small blue shift). The pulse amplification performances of QW-SOAs for two unchirped Gaussian input pulses having the peak power values of 10 and 100 mw have been investigated both in the presence and absence of the carrier heating effects. It has been found that carrier heating effects broaden the amplified output signal pulse width and lower the peak value of the amplified output pulse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.