Abstract

The study presented in this paper is concerned with the analysis of the ultrasound Doppler signal of the carotid arteries in the time-frequency domain using the short time Fourier transform (STFT) and the Wigner–Ville distribution (WVD). This study is carried out in order to investigate the behavior of the spectral broadening index (SBI) derived from spectra obtained using these methods. The variations in the shape of the Doppler power spectra as a function of time are presented in the form of sonograms in order to determine the degree of primitive carotid artery stenosis. The obtained results show a qualitative improvement in the appearance of the sonograms generated using the WVD over the STFT. However, despite this qualitative improvement the WVD suffers from some drawbacks: the presence of the cross terms which are primarily due to its quadratic nature. The application of the Choi–Williams distribution (CWD) in this analysis shows a noticeable reduction of these cross terms, improving therefore the quality of the sonograms. From these generated sonograms, the ultrasound frequency envelopes are extracted. The maximum and the mean frequencies in these envelopes are used to determine the SBI. The magnitude of the CWD-SBI is significantly greater than that of the STFT-SBI. In addition, there is a correlation between the SBIs obtained using the STFT and the CWD and the degree of severity of stenosis measured by 2D Doppler imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call