Abstract

ObjectiveThe objective was to measure the thickness of Streptococcus mutans (S. mutans) biofilms forming in an oral biofilm reactor (OBR) by using a noninvasive swept-source optical coherence tomography (SS-OCT) system at every 4 h time interval until 20 h and analyze the correlations with the amounts of biofilms. MethodsS. mutans biofilms were formed on square-shaped bovine enamel blocks inside an OBR. Biofilms were analyzed at every 4 h stage (4 h, 8 h, 12 h, 16 h and 20 h) using a SS-OCT system and a laser scanning confocal microscope (LSCM). The amounts of biofilms were measured at each stage by separating the water insoluble glucan (WIG) and bacterial cells. Co-relationships between the SS-OCT measured biofilm thickness and the amounts of adhered biofilms were analyzed. ResultsThe thickness of biofilms detected on SS-OCT images at 4 h stage was 0.059 ± 0.029 (Av ± SD) mm which increased time-dependently in a linear fashion after 8 h stage and reached to 0.435 ± 0.159 mm at 20 h stage and the correlation coefficient was about 0.89. The amounts of biofilms; bacterial optical density (OD) and WIG concentration increased time-dependently were 0.035 ± 0.008 / mm2 and 10.328 ± 2.492 µg/ mm2 respectively at 20 h stage. Correlation coefficients of 0.66 between ‘the amounts of bacteria’ and ‘biofilm thickness on OCT’ and 0.67 between ‘the amounts of WIG’ and ‘biofilm thickness on OCT’ were obtained, suggesting that there was a relatively positive correlation between them. ConclusionThe SS-OCT can be a useful tool to measure time-dependent growth of biofilms. Further studies are needed in order to assess biofilms using SS-OCT more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call