Abstract

Contractile dysfunction and Ca2+ transients are often analyzed at the cellular level as part of a comprehensive assessment of cardiac-induced injury and/or remodeling. One approach for assessing these functional alterations utilizes unloaded shortening and Ca2+ transient analyses in primary adult cardiac myocytes. For this approach, adult myocytes are isolated by collagenase digestion, made Ca2+ tolerant, and then adhered to laminin-coated coverslips, followed by electrical pacing in serum-free media. The general protocol utilizes adult rat cardiac myocytes but can be readily adjusted for primary myocytes from other species. Functional alterations in myocytes from injured hearts can be compared to sham myocytes and/or to in vitro therapeutic treatments. The methodology includes the essential elements needed for myocyte pacing, along with the cell chamber and platform components. The detailed protocol for this approach incorporates the steps for measuring unloaded shortening by sarcomere length detection and cellular Ca2+ transients measured with the ratiometric indicator Fura-2 AM, as well as for raw data analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call