Abstract

A simple procedure is proposed which yields, from carbon-13 longitudinal relaxation times and nuclear Overhauser enhancements, information concerning the local mobility of a given CH vector in an alkyi chain. This method is based on the definition of an effective rotation axis related to internal motions and makes use of Woessner's equations. It yields a correlation time τ R characteristic of the overall reorientation. In addition, for each carbon C i a correlation time τ G i , associated with the fast motion of the C i H vector, and an angle θ i , between C i H and an effective rotation axis, are determined. The effect of cross-correlation spectral densities is discussed. This model is used for analysing relaxation data of decylammonium chloride micelles. It is further checked by interpreting experimental results at two different observation frequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.