Abstract

The central role of calcium (Ca2+) signaling in lymphocyte development and acquisition of functional immunity and tolerance is well established. Ca2+ signals are initiated upon antigen binding to cognate receptors on lymphocytes that trigger store operated Ca2+ entry (SOCE). The underlying mechanism of SOCE in lymphocytes involves TCR and BCR mediated activation of Stromal Interaction Molecule 1 and 2 (STIM1/2) embedded in the ER membrane. Once activated, STIM proteins oligomerize and re-localize to ER domains juxtaposed to the plasma membrane where they activate Orai channels to allow Ca2+ to enter the cell across the plasma membrane. Importantly, STIM/Orai-dependent Ca2+ signals guide antigen induced lymphocyte development and function principally by regulating the activity of transcription factors.The most widely studied of these transcription factors is the Nuclear Factor of Activated T cells (NFAT). NFAT is expressed ubiquitously and the mechanism by which Ca2+ regulates NFAT activation and signaling is well known. By contrast, a mechanistic understanding of how Ca2+ signals also shape the activation and specificity of NF-κB to control the expression of pro-inflammatory genes has lagged. Here we discuss the methodology used to investigate Ca2+ dependent mechanisms of NF-κB activation in lymphocytes. Our approach focuses on three main areas of signal transduction and signaling: (1) antigen receptor engagement and Ca2+ dependent initiation of NF-kB signaling, (2) Ca2+ dependent induction of NF-κB heterodimer activation and nuclear localization, and (3) and how Ca2+ regulates NF-κB dependent expression of target genes and proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.