Abstract

Bulk samples and thin films were fabricated and characterized to determine their suitability for studying the effect of composition and morphology on strain sensitivity. Heat capacity and resistivity data are used to determine the critical temperature distribution. It is found that all bulk samples contain stoichiometric Nb3Sn regardless of their nominal Nb to Sn ratio. Furthermore, in bulk samples with Cu additions, a bi-modal distribution of stoichiometric and off-stoichiometric Nb-Sn is found. Thus the nominally off-stoichiometric bulk samples require additional homogenization steps to yield homogeneous off-stoichiometric samples. A binary magnetron-sputtered thin film has the intended off-stoichiometric Nb-Sn phase with a mid-point critical temperature of 16.3 K. This type of sample is a suitable candidate for investigating the strain sensitivity of A15 Nb1-βSnβ, with 0.18 <; β <; 0.25. The strain sensitivity of Nb-Sn as a function of composition and morphology is important for an in-depth understanding of the strain sensitivity of composite Nb3Sn wires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call