Abstract

This paper presents an experimental analysis of buckling and bending failure modes of a 2.58 m long, 460×460 mm2 6061-T6 Aluminum alloy column section used in emergency restoration towers. The main objective is to determine the bending and buckling load capacities of the column section through experiments, as these values are critical in an emergency tower (guyed mast) design. Within the context of this overarching goal, a secondary objective is to ascertain whether the presence of certain manufacturing non-conformance affects the loading capacity of the section significantly. Finally, finite-element analysis (FEA) simulations are conducted in order to compare the experimental data with numerical results. The results show that the ultimate bending and buckling load capacities of the column section are 383 kN and 3,868 kN respectively. Furthermore, the results indicate that the presence of manufacturing non-conformances such as air bubbles and delamination do not have a detrimental effect on the load capacity of the column. Of the two non-conformances studied, the specimen with bubbles had a 1% difference from the good specimen, and the delaminated specimen had a 10% deviation. Comparison of experimental data with FEA simulation results shows that the numerical solution tends to overestimate the stiffness of the column, and that the FEA approach may require further calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.