Abstract

BackgroundExposure to brominated flame retardants (BFRs) may contribute the advancement of chronic kidney disease (CKD). The objective is to evaluate the renal effects of BFRs in patients with CKD. MethodsTotally 7235 US participants of whom 1187 (16.41 %) were diagnosed with CKD were screened for this investigation from the National Health and Nutrition Examination Survey (NHANES) database spanning from 2005 to 2016. The isotope dilution gas chromatography high-resolution mass spectrometry (GC/IDHRMS) was employed for identification of 11 polybrominated diphenyl ethers (PBDEs) and PBB153 serving as the exposure factor. A set of covariates concerning basic characteristics, renal function indicators and suffering from diseases of these participants was considered as potential confounding factors. Subgroup analyses to examine the impact of age and gender on the relationship between serum BFRs and CKD, estimated glomerular filtration rate (eGFR), urinary albumin-to-creatinine ratio (UACR), serum creatinine (Scr), and blood urea nitrogen (BUN). Weighted Quantile Sum (WQS) regression and Quantile G-computation (QGC) analyses were applied to identify relationship of individual BFRs and other anthropometric indicators in CKD. ResultsAfter adjusting for available confounding factors, PBDE100, PBDE28, PBDE85, PBDE47, PBDE99, and PBDE154 were positively correlated with CKD. PBDE28, PBDE66, PBDE47, PBDE183, PBDE100, PBDE99, PBDE85, PBDE154, and PBB153 were significantly negatively correlated with eGFR. PBDE66 and PBDE183 were positively correlated with UACR. PBDE28, PBDE17, PBDE66, PBDE100, PBDE47, PBDE85, PBDE154, PBDE99, PBDE183 and PBB153 were positively correlated with Scr. PBDE17, PBDE28, PBDE154, PBDE66, PBDE47, PBDE99, and PBDE209 were negatively associated with BUN. PBB153 was positively correlated with BUN. The subgroup results gender and age are key factors affecting the relationship of PBDEs and renal function indicators. Both WQS and QGS analyses revealed that exposure to mixed BFR was negatively correlated with eGFR and BUN, of which PBB153 and PBDE66 contributed the most, respectively, as well as positively correlated with Scr, in which PBDE66 contributed the most. ConclusionSpecific BFRs exposure was significantly correlated with renal function indicators, enhancing the potential risk of CKD. This pioneer investigation shed light on an overlooked impact of BFR exposure on CKD in US.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.