Abstract

A new scheme with non-collinear sum frequency generation (SFG) process of broadband third harmonic generation (THG) with two KDP crystals (one doubler and one mixer) using angular dispersion was proposed. The principle of broadband harmonic generation with non-collinear angular dispersion was presented. The comparison between the schemes of non-collinear and collinear SFG process was performed. The effects of the angular dispersion on the conversion efficiency, the pulse shape and the spectrum of the third harmonic field were discussed. The results show that, if proper angular dispersion is added to the fundamental and the second harmonic field outside the mixing KDP crystal, respectively, the broadband third harmonic conversion efficiency can be improved significantly. However, the difficulty of this scheme arises due to the requirement of two gratings with different angular dispersion outside the mixer. With the new scheme, it can be simpler that only one grating is needed to realize the broadband phase matching in the non-collinear SFG process. Although the fundamental and the second harmonic field inside the mixing crystal are non-collinear except the center wavelength, a blazing grating with proper angular dispersion for the fundamental field (twice as that for second harmonic field) can yield the well compensation for phase mismatching in the SFG process. Consequently, the conversion efficiency and the characteristics of the third harmonic field for the broadband third harmonic generation can be improved significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.