Abstract

Discrete Element Method (DEM) simulations of elongated (i.e. needle-shaped) particles breakage in a shear field confined between two parallel plates, in analogy with processes occurring in a powder shear cell tester, were carried out. Effects of particle strength, shear rate and the compressive stress were investigated. The breakage patterns occurring in a layer of particles due to compressive and shearing stress fields are analysed in detail and compared. The results of these computational experiments reveal that when the course of particle breakage is represented in the mean particle length vs. polydispersity diagram, the breakage patterns for slow shearing and compression follow the same path that is close to the path constructed for an idealized breakage scenario, while curves for fast shearing deviate from the scenario towards higher polydispersities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.