Abstract
This study was focused on analyzing the effects of dietary inclusion of raw chickpea seed as a replacement of soybean meal as a primary protein source on bone structure in broiler chickens. Broiler chickens (n = 160) received in their diet either soybean meal (SBM) or raw chickpea seeds (CPS) as a primary protein source throughout the whole rearing period (n = 80 in each group). On the 42th day randomly selected chickens from each group (n = 8) were slaughtered. Collected tibiotarsus were subjected to examination of the biomechanical characteristics of bone mid-diaphysis, microstructure of the growth plate and articular cartilages; the analysis of mineral content and crystallinity of mineral phase, and the measurements of thermal stability of collagen in hyaline cartilage were also carried out. The inclusion of chickpea seeds resulted in increase of bone osteometric parameters (weight, length and mid-diaphysis cross-sectional area) and mechanical endurance (yield load, ultimate load, stiffness, Young modulus). However, when loads were adjusted to bone shape (yield and ultimate stress) both groups did not differ. Mineral density determined by means of densitometric measurements did not differ between groups, however the detailed analysis revealed the differences in the macro- and microelements composition. The results of FT-IR and XRD analyses showed no effect of diet type on mineral phase crystallinity and hydroxyapatite nanocrystallites size. In trabecular bone, the increase of real bone volume (BV/TV) and number of trabeculae was observed in the CPS group. Total thickness of articular cartilage was the same in both groups, save the transitional zone, which was thicker in the SBM group. The total thickness of the growth plate cartilage was significantly increased in the CPS group. The area of the most intense presence of proteoglycans was wider in the SBM group. The structural analysis of fibrous components of bone revealed the increase of fraction of thin, immature collagen content in articular cartilage, trabeculae and compact bone in the CPS group. The dietary inclusion of CPS affected the thermal stability of collagen, as decrease of net denaturation enthalpy was observed. This study showed a beneficial effect of CPS on the skeletal development, improving the overall bone development and the microarchitecture of cancellous bone. It suggests that CPS can be a promising replacement for SBM in broilers feeding in the aspect of animal welfare related to the development of the skeletal system.
Highlights
Nutrition has been identified as a critical factor impacting skeletal growth and bone strength in poultry [1]
It suggests that chickpea seeds (CPS) can be a promising replacement for soybean meal (SBM) in broilers feeding in the aspect of animal welfare related to the development of the skeletal system
In our earlier work we have shown that the replacement of SBM with raw CPS in broiler chickens influenced mechanical properties and tendon collagen thermal properties of tendon [18]
Summary
Nutrition has been identified as a critical factor impacting skeletal growth and bone strength in poultry [1]. Protein supply (quantity and source) is widely connected to bone development, remodeling, and mechanical strength [2, 3, 4]. Bone tissue consists of inorganic (mineral) constituents determining bone density and mechanical strength, while organic components form ossein, ensuring bone elasticity [1]. The greatest part of bone mineral structure is calcium and phosphorus located in hydroxyapatite crystallite structures. Bone remodeling and maturation, which involves changes in bone size and shape, depend on the interaction between bone cells activities, intermolecular networks of collagen, and interactions of proteoglycans and non-collagenous proteins. Designed diet may influence these processes and lead to severe skeletal disorders [3, 5,6,7,8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.