Abstract

PurposeThe purpose of this study was to establish an algorithm for measuring bone erosions at metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT), to investigate the precision of measurements, and to assess longitudinal changes in bone erosions among patients with rheumatoid arthritis (RA).MethodsThe 2nd and 3rd MCP joints were scanned at a voxel size of 60.7 μm using second-generation HR-pQCT. Bone erosions on MCP joints were identified using a semi-automated algorithm we developed, and each erosion parameter was measured. Measurement reproducibility was evaluated in 19 healthy subjects using intraclass correlation coefficients (ICCs) and root mean square percent coefficient of variance (RMS%CV). Finally, longitudinal changes in bone erosions over a period of 12 months were assessed in 26 patients with RA based on the calculated least significant change (LSC).ResultsReproducibilities for measurement parameters regarding bone erosions with our algorithm were good (all ICCs ≥ 0.98; all RMS%CVs < 5%). No erosion parameters showed significant changes after 12 months of treatment in terms of median values in all erosions, while both progression and repair of erosions were observed individually (e.g., erosion volume: progression, 26% (+0.62 mm3); repair, 34% (-0.85 mm3); no change, 40%).ConclusionsThe measurement algorithm developed for bone erosions at MCP joints showed good reproducibility. Both progression and repair of bone erosions were observed in patients with RA even after 12 months of appropriate treatment. Our algorithm may be useful to investigate the etiology of RA and assess drug efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call