Abstract

Workers' heat tolerance plays a crucial role in maintaining their health and performance in hot environments. This study aimed to empirically analyze the body heat tolerance of workers under a simulated warm environment. Twenty healthy male workers from the typical light metal industry (age: 23.15±2.45 years) were participated in the experimental study. Workers were exposed to two thermal environments (Ta = 22°C, RH = 35%, and Ta = 35°C, RH = 35%) in a simulated moderate workload in a climate-controlled room. The maximal aerobic capacity (VO2 max) and body fat mass of workers were determined. The heat tolerance indicators were determined based on heart rate (HR) and ear temperature (ET) before and after each experiment. A linear mixed model was employed to analyze body heat tolerance indicators using the SPSS statistical package. All physiological responses significantly increased in the warm air condition compared to the thermoneutral condition. The HR and ET increased by an average of 14 bpm and 0.75°C, respectively (p<0.05). The mixed model could accurately predict heat tolerance indicators (r = 0.95 and r = 0.97) so that the VO2 max and body fat mass were identified as the main individual influential factors. The VO2 max showed significant correlation with urinary specific gravity (r = -0.55, p<0.05), HR (r = -0.59, p<0.05), and ET (r = -0.57, p<0.05) in warm environment. The model confirmed that physical fitness is critical in increasing heat tolerance in warm environments. It can be a helpful screening tool for properly selecting workers in occupational medical examinations for working in warm air conditions. It is proposed that workers' regular exercise and lifestyle modifications can strengthen their heat tolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.