Abstract

Blood flow has been extensively studied because of its close relationship with cardiovascular disease. Heart valves blood flow analysis is particularly complex due to the high mobility of its leaflets, a fact that has stimulated the development of computational models aimed to its better understanding. For studying heart valves blood flow, we developed a mathematical model derived from clinical observations based on echocardiographic images, which describe valve leaflets motion and its influence on blood flow. This work presents a concentrated-parameters-based model of heart valves blood flow that takes into consideration five main factors affecting such a flow in the mitral and aortic valves. This model considers factors that are related to blood fluid and valve leaflets characteristics. Considering the main factors involved, it was found that blood flow exhibit an abnormal behavior in response to small variations (less than 10%) in blood pressure gradient or in leaflets stiffness. Likewise, after changing the roughness of the leaflets, the impact is smaller, only slightly affecting blood flow behavior with changes beyond 30%. Moreover, it was observed that the influence of fluid vortices originated behind the valves can be disregarded and the kinetic energy induced by them is almost negligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.