Abstract
Blood flow analysis through arterial walls depicts unsteady non-Newtonian fluid flow behavior. Arterial walls are impacted by various chemical reactions and magnetohydrodynamic effects during treatment of malign and tumors, cancers, drug targeting and endoscopy. In this regard, current manuscript focuses on modeling and analysis of unsteady non-Newtonian Carreau-Yasuda fluid with chemical reaction, Brownian motion and thermophoresis under variable magnetic field. The main objective is to simulate the effect of different fluid parameters, especially variable magnetic field, chemical reaction and viscous dissipation on the blood flow to help medical practitioners in predicting the changes in blood to make diagnosis and treatment more efficient. Suitable similarity transformations are used for the conversion of partial differential equations into a coupled system of ordinary differential equations. Homotopy analysis method is used to solve the system and convergent results are drawn. Effect of different dimensionless parameters on the velocity, temperature and concentration profiles of blood flow are analyzed in shear thinning and thickening cases graphically. Analysis reveals that chemical reaction increases blood concentration which enhance the drug transportation. It is also observed that magnetic field elevates the blood flow in shear thinning and thickening scenarios. Furthermore, Brownian motion and thermophoresis increases temperature profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.