Abstract

AbstractIn this paper, we describe and analyse several block matrix iterative algorithms for solving a saddle point linear system arising from the discretization of a linear‐quadratic elliptic control problem with Neumann boundary conditions. To ensure that the problem is well posed, a regularization term with a parameter α is included. The first algorithm reduces the saddle point system to a symmetric positive definite Schur complement system for the control variable and employs conjugate gradient (CG) acceleration, however, double iteration is required (except in special cases). A preconditioner yielding a rate of convergence independent of the mesh size h is described for Ω ⊂ R2 or R3, and a preconditioner independent of h and α when Ω ⊂ R2. Next, two algorithms avoiding double iteration are described using an augmented Lagrangian formulation. One of these algorithms solves the augmented saddle point system employing MINRES acceleration, while the other solves a symmetric positive definite reformulation of the augmented saddle point system employing CG acceleration. For both algorithms, a symmetric positive definite preconditioner is described yielding a rate of convergence independent of h. In addition to the above algorithms, two heuristic algorithms are described, one a projected CG algorithm, and the other an indefinite block matrix preconditioner employing GMRES acceleration. Rigorous convergence results, however, are not known for the heuristic algorithms. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.