Abstract

The impeller blade structure is one of the important factors affecting the performance of the turbine flow sensor. However, the underlying fluid dynamics mechanism is still not fully understood. The DN10 turbine flow sensor's internal flow field was analyzed based on computational fluid dynamics (CFD) simulations to explain the influence mechanism of blade structure on its performance. The experiment proves that the simulation method is reliable. The structural parameter η, which characterizes the shape of the impeller blade, was defined, and four turbine flow sensor structures were studied. The results suggested that the value of η affects the stability of the impeller's fluid dynamics characteristics, the velocity distribution at the impeller inlet, and the acting position and time of the wake flow behind the upstream flow conditioner. Therefore, the structural parameter influents the performance of the turbine flow sensor. With the increase of η, the characteristic curve gradually moves down, the average meter factor decreases, and the linearity error increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.