Abstract

A theoretical study of single and multimode vertical-cavity surface-emitting lasers (VCSELs) subject to pseudorandom modulation of the current at a rate of 10 Gb/s is performed. Eye diagrams, probability density functions of the power at the decision time, averaged turn-on delay, and timing jitter are analyzed for different values of the on- and off-state currents. Bit sequences where errors occur are identified. Extensive simulations have been performed to obtain the bit-error rate (BER) for the back-to-back configuration. We find that the BER performance of single-mode VCSELs is better than the one obtained with multimode VCSELs when the off-state current is smaller than the threshold current. The same result is obtained when the off-state current is larger than the threshold value, providing that the on-state current is large enough. However, BER in single-mode VCSELs is greater than in multimode VCSELs when the off-state current is equal to the threshold current. BER performance is also better for multimode VCSELs when the off-state current is larger than the threshold value, if the on-state current is small enough.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call