Abstract
The present work is aimed at the development of a finite element model of a composite laminate, to evaluate the possibility to snap between equilibrium configurations by means of shape memory alloy (SMA) wires. The underlying idea is to potentially take advantage of structures which possess multiple equilibrium configurations that can be achieved with a small energy input. Therefore, unsymmetric composite laminates that exhibit bistable response to actuation force are considered. Embedded SMA wires will provide the actuation force by virtue of Shape-Memory Effect i.e. restoring the original shape of a plastically deformed SMA wire by heating it. The Shape-Memory Effect is modelled in a simplified way using the Effective Coefficient of Thermal Expansion concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.