Abstract

Electromagnetic fields (EMF) are essential to various applications directly involving humans. Fears about the biological effect of exposure to electromagnetic fields drive enormous research into this area. This research generates conflicting results, and consequently, uncertainty regarding possible health effects. This chapter studies a nonlinear Lorenz model describing interactions among charged particles and combined alternating (AC: alternating current) and static (DC: direct current) electromagnetic fields, for various combinations of frequencies, field strengths and relative angle (?) between the AC and DC magnetic fields. We investigate the effect on charged particles of three possible combinations of alternating and static electromagnetic fields: (i) AC electric field and DC magnetic field (ii) AC magnetic field and DC magnetic field (iii) AC electric field and AC and DC magnetic field. Then the behavior of the particle in these fields with different initial conditions and strong directional effects is observed when the angle between AC and DC magnetic fields is varied. The results show that the cyclotron resonance frequency is affected by charged particles’ initial position and initial velocity. Further, we observe strong effects of electric and magnetic fields on a charged particle in a biological cell with initial position and initial velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call