Abstract

Background Vulvovaginal candidiasis caused by Candida species is a prevalent fungal infection among women. It is believed that the pathogenesis of Candida species is linked with the production of biofilm which is considered a virulence factor for this organism. The aim of this study was molecular identification, antifungal susceptibility, biomass quantification of biofilm, and detection of virulence markers of Candida species. Methods We investigated the molecular identification of 70 vaginal isolates of Candida species, antifungal resistance to amphotericin B, fluconazole, itraconazole, and voriconazole according to CLSI M27-A3 and M27-S4, biofilm formation, and frequency analysis of biofilm-related ALS1, ALS3, and HWP1 genes. Results Our findings showed that the most common yeast isolated from vaginal discharge was C. albicans (67%), followed by the non-Candida albicans species (33%). All C. albicans complex isolates were confirmed as C. albicans by HWP-PCR, and all isolates of the C. glabrata complex were revealed to be C. glabrata sensu stricto using the multiplex PCR method. FLC resistance was observed in 23.4% of C. albicans and 7.7% of C. glabrata. The resistance rate to ITC was found in 10.6% of C. albicans. The frequency of ALS1, ALS3, and HWP1 genes among Candida species was 67.1%, 80%, and 81.4%, respectively. Biofilm formation was observed in 54.3% of Candida species, and the highest frequency detected as a virulence factor was for the ALS3 gene (97.3%) in biofilm-forming species. Discussion. Our results showed the importance of molecular epidemiology studies, investigating antifungal susceptibility profiles, and understanding the role of biofilm-related virulence markers in the pathogenesis of Candida strains.

Highlights

  • Vulvovaginal candidiasis (VVC) is a common fungal infection in young women, and several factors such as age, diabetes, pregnancy, taking estrogen-containing birth control pills, antibacterial therapy, and the use of intrauterine devices have been identified as risk factors [1]

  • The MspI-PCR analysis indicated that C. albicans was the most prevalent isolated species (47, 67%), followed by C. glabrata (13, 18.5%), C. kefyr (5, 7%), C. tropicalis (3, 4.2%), and C. parapsilosis (2, 2.8%) (Figure 1)

  • Our findings showed that the most common yeast isolated from vaginal discharge was C. albicans (67%), followed by C. glabrata (18.5%), C. kefyr (7%), C. tropicalis (4.2%), and C. parapsilosis (2.8%) The distribution of Candida isolates in our study was similar to other studies [24,25,26,27,28]

Read more

Summary

Introduction

Vulvovaginal candidiasis (VVC) is a common fungal infection in young women, and several factors such as age, diabetes, pregnancy, taking estrogen-containing birth control pills, antibacterial therapy, and the use of intrauterine devices have been identified as risk factors [1]. ALS1 and ALS3 genes affect adhesion to host epithelial cells and endothelial cells [11, 12] Another protein affecting the adhesion and regulation of biofilm in C. albicans is the hyphal wall protein produced by the HWP1 gene [13]. The aim of this study was molecular identification, antifungal susceptibility, biomass quantification of biofilm, and detection of virulence markers of Candida species. We investigated the molecular identification of 70 vaginal isolates of Candida species, antifungal resistance to amphotericin B, fluconazole, itraconazole, and voriconazole according to CLSI M27A3 and M27-S4, biofilm formation, and frequency analysis of biofilm-related ALS1, ALS3, and HWP1 genes. Our results showed the importance of molecular epidemiology studies, investigating antifungal susceptibility profiles, and understanding the role of biofilm-related virulence markers in the pathogenesis of Candida strains

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call