Abstract

Interleukin-13 Pseudomonas exotoxin (IL-13PE), a targeted agent for interleukin-13 receptor α2 (IL-13Rα2)-expressing tumors, has been administered intracranially by convection-enhanced delivery (CED) for glioma therapy in several clinical trials including a randomized phase 3 clinical trial. However, its intracranial distribution was not optimally evaluated. We investigated the intracranial distribution of radiolabeled IL-13PE after CED in a murine model of glioblastoma multiforme. IL-13PE was radiolabeled with Na(125)I and evaluated for its activity in vitro in receptor-positive U251 or -negative T98G human glioma cell lines. Gliomas were grown in nude mice after intracranial implantation with U251 cells, and (125)I-IL-13PE was stereotactically administered by bolus or CED for 3 d, followed by micro-SPECT/CT imaging. SPECT images were evaluated quantitatively and compared with histology and autoradiography results. The radioiodination technique resulted in a specific and biologically active (125)I-IL-13PE, which bound and was cytotoxic to IL-13Rα2-positive but not to IL-13Rα2-negative tumor cells. Both the binding and the cytotoxic activities were blocked by a 100-fold excess of IL-13, which indicated the specificity of binding and cytotoxicity. SPECT/CT imaging revealed retention of (125)I-IL-13PE administered by CED in U251 tumors and showed significantly higher volumes of distribution and maintained detectable drug levels for a longer period of time than the bolus route. These results were confirmed by autoradiography. IL-13PE can be radioiodinated without the loss of specificity, binding, or cytotoxic activity. Intracranial CED administration produces a higher volume of distribution for a longer period of time than the bolus route. Thus, CED of IL-13PE is superior to bolus injection in delivering the drug to the entire tumor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call