Abstract

In this numerical study, two-dimensional simulations are performed to obtain the bioconvection flow in a quadrant heater located porous closed space saturated with nano-enhanced phase change material (NePCM). The Galerkin finite element method (GFEM) is employed to compute the governing equations for the considered system by developing a computer code. The study is performed for wide range of parameters as aspect ratio, Darcy number, Hartmann number, nanoparticle fraction, bioconvection Rayleigh number and natural convection Rayleigh number were tested. Also, the analysis is supported via artificial intelligent by using multiple support vector regression based model. The tests were performed with artificial intelligence on temperature values. After the analysis, it is found that radius of the curvilinear shaped heater plays role on both heat transfer and fluid flow, oxygen distribution, density of motile microorganism and heat capacity. Application of support vector machine technique gives good agreement with computational fluid dynamics results. Heat and mass transfer are improved with increasing of nanoparticle addition but decrease with increasing of strength of magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.