Abstract
Cytochromes P450 (CYPs) are extremely versatile enzymes capable of catalyzing a vast number of compounds, and CYP3A4 is no exception metabolizing approximately half of the currently marketed drugs, besides endogenous compounds. To metabolize such a variety of compounds, CYP3A4 has to be extremely flexible, which makes interaction studies difficult. We employ a multi-conformational docking setup where conformations are generated by several molecular dynamics simulations to analyze the binding modes of various ligands, and the docking is considered successful if the ligand site of catalysis (SOC) is within 6.0 Å of the haem Fe. While docking with the X-ray structure proved unsuccessful with all ligands, the multi-conformational docking achieved successful binding of each ligand to at least one protein conformation. Analysis of the docked solutions highlights residues in the active site cavity that may have an important role in access, binding and stabilization of the ligand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.