Abstract
This article studies the linear stability of a thermoconvective problem in an annular domain for different Bond (capillarity or buoyancy effects) and Biot (heat transfer) numbers for two set of Prandtl numbers (viscosity effects). The flow is heated from below, with a linear decreasing horizontal temperature profile from the inner to the outer wall. The top surface of the domain is open to the atmosphere and the two lateral walls are adiabatic. Different kind of competing solutions appear on localized zones of the Bond–Biot plane. The boundaries of these zones are made up of co-dimension two points. A co-dimension four point has been found for the first time. The main result found in this work is that in the range of low Prandtl number studied and in low-gravity conditions, capillarity forces control the instabilities of the flow, independently of the Prandtl number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.