Abstract
In order to study the bifurcation characteristics and control chaotic vibration of the gear transmission system. The complex dynamics characters of gear transmission system are studied. The dynamical equation and the state equation of gear transmission system are established according to Newton's rule. The route to chaos of the system is studied by the bifurcation diagram, phase portrait, time course diagram and Poincaré map. A method of controlling chaos by nonlinear feedback controller is developed to guide chaotic motions towards regular motions. Numerical simulation shows that with the increase of meshing stiffness, gear transmission system will be from the periodic motion to chaotic motion by doubling bifurcation, the effectiveness and feasibility of the strategy to get rid of chaos by stabilizing the related unstable periodic orbit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Research Journal of Applied Sciences, Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.