Abstract

The production of aluminum alloy multi-lumen tubes primarily involves hot bending formation, a process where controlling thermal deformation quality is difficult. Specifically, the inner cavity wall of the tube is prone to bending instability defects under the bending stress field. To address these challenges in the bending deformation of aluminum alloy multi-lumen tubes, a multi-lumen liquid-filled bypass forming method is proposed in this paper. This study focuses on the 6063-T5 aluminum alloy double-lumen tube as the research object. The liquid-filled bending deformation behavior of the aluminum alloy double-lumen tube was investigated, and the deformation theory of the aluminum alloy double-lumen tube was studied. Through experimental and numerical simulation methods, the influence of support internal pressure, bending radius, and tube wall thickness on the liquid-filled bending deformation behavior of the double-lumen tube was examined. The results indicate that when the value of internal pressure was 7.5 MPa, the straightening of the outer wall was improved by 2.51%, the thinning rate of wall thickness was minimized, and the internal concave defect was effectively suppressed. The liquid-filled bending method provides a promising new approach for the integrated bending and forming of multi-lumen tubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.