Abstract

This paper describes an analytical approach to conduct an analysis of beam-column elements with generalized end-boundary conditions on a homogeneous or non-homogeneous Pasternak elastic foundation. The mathematical formulation utilized herein is that presented by the senior author in a recent work. The differential equation (DE) governing the behavior of the beam-column element is solved using the differential transformation method (DTM). The DTM offers practical advantages over other conventional approaches when solving the proposed structural model. The proposed formulation provides the flexibility to account for i) combined lateral and axial load at the ends of the element, ii) homogeneous or non-homogeneous soil, iii) Pasternak elastic foundation, and iv) an external arbitrary transverse load acting on the element. The effects of various slenderness ratios, pile-soil stiffness ratios, and classical and semirigid boundary conditions can be easily studied with the proposed formulation. Examples are presented to validate the accuracy of the model and its applicability over a wide range of analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.