Abstract
The naive Bayes classifier is considered one of the most effective classification algorithms today, competing with more modern and sophisticated classifiers. Despite being based on unrealistic (naive) assumption that all variables are independent, given the output class, the classifier provides proper results. However, depending on the scenario utilized (network structure, number of samples or training cases, number of variables), the network may not provide appropriate results. This study uses a process variable selection, using the chi-squared test to verify the existence of dependence between variables in the data model in order to identify the reasons which prevent a Bayesian network to provide good performance. A detailed analysis of the data is also proposed, unlike other existing work, as well as adjustments in case of limit values between two adjacent classes. Furthermore, variable weights are used in the calculation of a posteriori probabilities, calculated with mutual information function. Tests were applied in both a naive Bayesian network and a hierarchical Bayesian network. After testing, a significant reduction in error rate has been observed. The naive Bayesian network presented a drop in error rates from twenty five percent to five percent, considering the initial results of the classification process. In the hierarchical network, there was not only a drop in fifteen percent error rate, but also the final result came to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.