Abstract

Serum lipids were reported to be the prognostic factors of various cancers, but their prognostic value in small cell lung cancer (SCLC) patients remains unclear. This study investigated the relationship between lipid profiles and clinical outcomes in extensive-stage (ES) SCLC by establishing a predictive risk classification model. We retrospectively analyzed the prognostic values of pretreatment serum lipids and their derivatives in patients with a confirmed diagnosis ES-SCLC. Independent factors of progression-free survival (PFS) were determined by univariate and multivariate cox analysis. Then, prognostic nomograms were established, of which predictive performance was evaluated by concordance index (C-index), calibration curves, receiver operating characteristic (ROC) curves, and decision curve analyses (DCA). A total of 158 patients was included in this study. Four optimal PFS-related factors, total cholesterol (TC) ≥ 5.30, high-density lipoprotein cholesterol (HDL-C) > 1.30, triglycerides (TG)/HDL-C > 2.18, and ki67 expression > 70%, were included to construct the predictive nomogram. The C-indexes in training and validation sets were 0.758 and 0.792, respectively. ROC curves, calibration plots, and DCA all suggested favorable discrimination and predictive ability. Besides, the nomogram also performed better predictive ability than ki67 expression. Nomogram-related risk score divided the patients into two groups with significant progression disparities. The promising prognostic nomogram based on lipid parameters could help clinicians to conveniently and accurately evaluate the prognosis of ES-SCLC patients and identify high-risk groups, so as to formulate individualized therapeutic regimens and follow-up strategies in time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.