Abstract

Context Source and composition of feed influence rumen microbial community, which determines efficiency of feed digestion and thus productivity in ruminants. Therefore, changes in the structure, function and diversity of the rumen microbial populations in response to changes in diet provide an understanding in the rumen fermentation process. Aims The present study, consisting of two experiments, was conducted to determine the effects of supplementing different protein and energy sources on the rumen bacterial community in cattle. Methods The dietary treatments of the first experiment, which evaluated the effect of protein sources, were as follows: (i) Hymenachne acutigluma grass, rice straw and rice bran (1.5 kg/head.day; C1), (ii) C1 plus 120 g urea/head.day (C1 + U), (iii) C1 plus 720 g soybean/head.day (C1 + SM), and (iv) C1 plus 720 g of blood and feather meal (in 1:1 ratio)/head.day (C1 + BFM). The treatments in the second experiment were (i) Hymenachne acutigluma grass, rice straw and concentrate (1.5 kg/head.day; C2), (ii) C2 plus 250 g fish oil/head.day (C2 + FO) and (iii) C2 + 250 g soybean oil/head.day (C2 + SO). At the end of the 90-day feeding trial, rumen fluids were extracted for microbial DNA isolation to identify the microbe species by the polymerase chain reaction–denaturing gradient gel electrophoresis method and sequencing of the 16S rRNA region. Key results The sequences of some DNA bands were closely related to the bacteria strains of the Prevotella, Cytophaga, Capnocytophaga, Cyanobacterium, Catonella, Faecalibacterium, Lachnospiraceae, Ruminococcaceae, Propionivibrio, Galbibacter, Moorellaglycerin, Escherichia coli and Klebsiella alba groups, with similarity levels ranging from 73% to 96%. In addition, the Prevotella species was found in both the protein and the energy supplement trials, and irrespective of diet supplements, the Firmicutes and Bacteroidetes were the prominent groups in the rumen. Conclusions Firmicutes and Bacteroidetes are the two dominant groups of rumen microflora, and Bacteroidia and Clostridia classes together with the Prevotella genus are predominant in the rumen irrespective of protein and energy sources. Implications Our findings provided evidence on the effect of diet on the interaction of rumen microbial community and have important implications in establishing optimal diets for cattle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.