Abstract

Back-to-back Mechanically Stabilized Earth (MSE) walls are commonly used for embankments approaching bridges. However, available design guidelines for this wall system are limited. The distance between two opposing walls is a key parameter used for determining the analysis methods in FHWA Guidelines. Two extreme cases are identified: (1) reinforcements from both sides meet in the middle or overlap, and (2) the walls are far apart, independent of each other. However, existing design methodologies do not provide a clear and justified answer how the required tensile strength of reinforcement and the external stability change with respect to the distance of the back-to-back walls. The focus of this paper is to investigate the effect of the wall width to height ratio on internal and external stability of MSE walls under static conditions. Finite difference method incorporated in the FLAC software and limit equilibrium method (i.e., the Bishop simplified method) in the ReSSA software were used for this analysis. Parametric studies were carried out by varying two important parameters, i.e., the wall width to height ratio and the quality of backfill material, to investigate their effects on the critical failure surface, the required tensile strength of reinforcement, and the lateral earth pressure behind the reinforced zone. The effect of the connection of reinforcements in the middle, when back-to-back walls are close, was also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.