Abstract

Abstract Optical packet switching (OPS) is an emerging area of research in next-generation datacenter applications. There is an exponential growth in the internet traffic due to applications such as social networking, cloud computing, video streaming, etc. Fiber optical network plays a critical role in various data center (DC) operations. Large bandwidth of the optical fiber made OPS, a promising technology for DCs. Arrayed waveguide gratings (AWGs) are used more frequently in the core of optical packet switches due to its low insertion loss and wavelength dependent routing pattern. Optical switching function can be performed by AWG if each input port is properly equipped with Tunable wavelength converters (TWCs). This paper presents analysis of four optical packet switches namely AWG and Feedback Loop Buffer based switch, AWG and Electronic Memory based switch, Petabit Optical Switch, AWG and Feedback Loop Buffer Loss Compensated based Switch. Switches are analyzed for Bit Error Rate (BER) and energy consumption. The power and noise analysis is performed for calculating the total power required for correct operation of switch and to determine the BER using physical layer analysis. Minimum power level is determined so that received bits are decoded correctly. Energy consumption per bit is also evaluated to identify architecture consuming less energy in the considered architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call