Abstract

Composites have been increasingly used in many engineering fields. Polymer composites are now widely used to build automotive components due to their exceptional rigidity and strength properties. Composite shafts for automotive applications are among the most recent research areas. A weight reduction can be achieved mainly with the introduction of a better material. The conventional system uses a metal shaft and has inherent limitations such as weight, corrosion, elasticity, vibration, storage and manufacturing problems increase with increasing shaft diameter. Advanced composites offer the opportunity to improve the transmission shaft by reducing weight, bearing load, misalignment and life cycle costs through the use of strategic materials, increasing the properties of resistance to fatigue, flexibility and vibration damping. The objective is the design and analysis of composite hollow shafts made of low density carbon fiber reinforced plastic (CFRP) for motor vehicles. And To investigate the vibrational effect of propeller shaft at different mode condition using FEA by ANSYS 18.2. In this result are the total weight of carbon fiber shaft is reduce. The total weight of the carbon fiber shaft is 2.6 kg is less then to previous material. And the previous study material of weight is 3.2kg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.