Abstract

The characteristics of the band-to-band Auger recombination in Czochralski-grown high resistivity Si and Ge single crystals have been studied using a contactless technique to measure excess carrier decay transients based on infrared absorption by free carriers. The measurements are performed using laser light excitation with wavelengths ranging from 1.2 to 2.5 µm to reduce inhomogeneity effects in the extraction of the Auger recombination parameters. A linear approximation of the initial excess carrier decay lifetime yields an approximate value of the Auger recombination coefficient in Ge γA,Ge ≈ 2×10-31 cm6/s, which is close to that in Si. These characteristics also indicate that the difference in Auger recombination coefficients for the ehh and eeh processes is small. A more detailed fitting procedure applied simultaneously on a series of experimental transients yields a more accurate value of (8±3)×10-31 cm6/s for the Auger recombination coefficient in Ge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.