Abstract

Atomic mobility in as-cast and annealed Cu38Zr46Ag8Al8 bulk metallic glass samples is analyzed by performing dynamic mechanical analysis. The loss factor is directly connected to the energy lost during application of the stress. Structural relaxation process and crystallization lead to a decrease of the atomic mobility in the bulk metallic glass. A physical model, based on the concept of quasi point defects is introduced, to describe the atomic mobility. Movements in amorphous materials are correlated. The correlation factor χ reflects the atomic mobility in bulk metallic glasses: structural relaxation and crystallization lead to a decrease of χ, implying the reduction of atomic mobility. The evolution of elastic, visco-elastic and viscoplastic components after structural relaxation and partial crystallization state during the mechanical response has been obtained. Compared with as-cast state, structural relaxation induced an increase of elastic component and a decrease of visco-elastic component in the metallic glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call